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Abstract. We propose a novel quantum switch teleportation with a continuous variable, which can teleport
a quantum state to two different receivers alternatively, using a pair of two-mode squeezed lights as the
quantum switching to manipulate the transmission route. In this scheme, the EPR entangled beams shared
by sender and receivers are produced by mixing a pair of two-mode squeezed lights on one beamsplitter
and separating them by using a polarizing beam splitter. The teleportation capability of this system is
examined by the criteria proposed by Ralph and Lam [10] from a small signal quantum optical point of
view.

PACS. 03.67.-a Quantum information – 42.50.Dv Nonclassical field states; squeezed, antibunched,
and sub-Poissonian states; operational definitions of the phase of the field; phase measurements

1 Introduction

Quantum information technology aims to create commu-
nication and computation systems superior to those based
on classical physics by utilizing the nonlocal quantum cor-
relations of entangled states. The standard approach to
quantum information processing and quantum computa-
tion is to make use of discrete quantum entanglement such
as single photon entanglement generated by parametric
down conversion [1]. It has significantly improved our un-
derstanding of quantum systems likely to contribute to the
realization of a quantum computer and has raised many
interesting possibilities such as quantum dense coding,
quantum cryptography, and quantum teleportation. Al-
ternatively, instead of single particle entanglement, many-
photon states of light can be used for quantum informa-
tion. These states are described by continuous variables
and have distinct advantage in terms of the availability of
controlled sources, efficient detection systems and easy-to-
handle processing using linear elements. One of the most
striking features of quantum information is that it makes
possible quantum teleportation [2,3]. In a quantum tele-
portation scheme, the quantum state of a system can be
transmitted from one location to another through the di-
rect transmission of only classical information, provided
the sender and receiver share a non-locally entangled state
of the Einstein, Podolsky, Rosen (EPR) type. Since contin-
uous variable quantum teleportation of arbitrary coherent
states has been realized experimentally [4] using paramet-
ric down conversion as an EPR source [5], much attention
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has been paid to the study of continuous variables in infor-
mation processes. Continuous variables have been shown
to be useful in performing quantum dense coding [6,7],
quantum cryptography [8], quantum cloning [9] and so on.
Furthermore, a teleportation scheme with bright squeezed
light has been proposed [10]. The use of bright beams al-
lows one to simplify the inverse Bell-state-like measure-
ment. Recently, interest has focused on the generation of a
bright squeezed state or EPR beams [11,12]. Other quan-
tum techniques using continuous variables of light have
also been discussed in detail [13,14].

Many attempts have been made at developing a quan-
tum information system. One of them is to teleport a
quantum state from one sender to many receivers by using
a multiparticle entanglement state [15], i.e., a realization
of a quantum network. In the experiment, the two ways
to generate EPR beams were by using the nondegener-
ate optical parametric amplifier (NOPA) and combing a
pair of bright squeezed amplitude state [11,12]. What will
we obtain when we combine a pair of two-mode squeezed
lights at a beamsplitter? Another route is to develop an
actual quantum device. Lots of quantum devices, such
as quantum rulers [16], have been proposed. The first
scheme for continuous variable switch teleportation was
proposed by Zhang [17], in which two EPR sources shared
by Alice and Bobs are produced by mixing a pair of two-
mode squeezed state lights on two beamsplitters of 50%.
In this paper we consider a similar arrangement but show
that two two-mode squeezed sources can produce quan-
tum switch teleportation only with one beamsplitter di-
rectly. By converting one of the two two-mode squeezed
state lights between the amplitude squeezed and phase



362 The European Physical Journal D

squeezed or by changing the relative phase between two
lights; the original input signal can be conditionally tele-
ported at either of two output stations, alternatively. The
teleportation capability of the system is examined using
the criteria proposed by Ralph and Lam from a small sig-
nal quantum optical point of view [10]. The conditional
teleportation system might be developed as a practical
quantum switching in future quantum communication.

2 Continuous variable quantum switching
teleportation

We first give a short introduction providing an intuitive
picture of two-mode squeezed state and how continuous
variable entanglement manifests itself. Consider two spa-
tially separated optical modes αj (j = 1, 2). The involved
optical fields can be fully described by means of field
quadratures, the amplitude quadrature X̂j = â†

j + âj and
the phase quadrature Ŷ = i(â†

j − âj). They obey the com-
mutation rules [X̂j , Ŷj ] = 2iδjk, (j, k = 1, 2) and these
commutation relations limit the combined variables that
commute: [

X̂1 + X̂2, Ŷ1 + Ŷ2

]
= 4i, (1)

and [
X̂1 − X̂2, Ŷ1 − Ŷ2

]
= 4i, (2)

but leave the possibility for other combined variables of
both modes that commute:[

X̂1 + X̂2, Ŷ1 − Ŷ2

]
= 0, (3)

or [
X̂1 − X̂2, Ŷ1 + Ŷ2

]
= 0. (4)

Hence quantum states are possible for which all the vari-
ables X̂j , Ŷj are uncertain, but certain joint variables
of two optical modes together are both well defined. In
the quantum optical context this is known as two-mode
squeezing for X̂ or Ŷ . The variances of quadrature am-
plitude and phase for the two-mode squeezed state are
expressed as follows [18]:

V
(
X̂1 + X̂2

)
→ 0, V

(
Ŷ1 − Ŷ2

)
→ 0, (5)

or

V
(
X̂1 − X̂2

)
→ 0, V

(
Ŷ1 + Ŷ2

)
→ 0, (6)

which correspond to the amplitude or phase component
squeezed state. V (Â) = 〈Â2〉 − 〈Â〉2 is the variance of op-
erator Â. This kind of state can be generated by a NOPA
or by combining two single-mode squeezed states experi-
mentally [11,12]. Equations (5, 6) also represent a measure
of quantum correlation between two spatially separated
optical modes, i.e., for continuous variable entanglement.
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Fig. 1. Schematic of generation switching EPR beams. Dots:
vertical polarization, short lines: horizontal polarization, BS:
beam splitter, PBS: polarizing beam splitter.

2.1 Creating EPR switching state

It is well known that an entanglement source can be built
from two single-mode squeezed lights combined at a beam-
splitter [19]. The schematic diagram for the combination
of a pair of two-mode squeezed lights is shown in Figure 1.
A pair of two-mode squeezed beams, which are coupled by
two modes with identical frequency but orthogonal polar-
ization and denoted by â1 + â2 and â3 + â4, are combined
on a beamsplitter with reflectivity r and transmissivity t,
both being close to 2−1/2, and relative optical phase θ.
The fields at the output ports (e, f) are then the linear
superposition of the input fields:(

ê

f̂

)
=
(

t − reiθ

r teiθ

)(
â1 + â2

â3 + â4

)
· (7)

Introducing the quadrature amplitudes and phases for the
outgoing fields in analogy to that for the squeezed lights
and performing the algebra, we arrive at

X̂e

Ŷe

X̂f

Ŷf

 =


t 0 −r cos θ r sin θ

0 t −r sin θ −r cos θ

r 0 t cos θ −t sin θ

0 r t sin θ t cos θ




X̂1 + X̂2

Ŷ1 + Ŷ2

X̂3 + X̂4

Ŷ3 + Ŷ4

 . (8)

We can now readily write the cross correlation between
the two outgoing fields by putting t = r = 2−1/2

V (X̂e+X̂f)

V (X̂e−X̂f)

V (Ŷe+Ŷf)

V (Ŷe−Ŷf)

=


2 0 0 0
0 0 2 cos2 θ 2 sin2 θ

0 2 0 0
0 0 2 sin2 θ 2 cos2 θ




V (X̂1+X̂2)

V (Ŷ1+Ŷ2)

V (X̂3+X̂4)

V (Ŷ3+Ŷ4)

.

(9)

From equation (9), it can be seen that the entangled out-
going fields can be obtained by choosing the proper rela-
tive phase and squeezing component of one squeezed light
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V (X̂A + X̂B) =
1
2
V (X̂1 + X̂2) +

1
2

cos2 θV (X̂3 + X̂4) +
1
2

sin2 θV (Ŷ3 + Ŷ4),

V (X̂A − X̂B) =
1
2
V (X̂1 − X̂2) +

1
2

cos2 θV (X̂3 − X̂4) +
1
2

sin2 θV (Ŷ3 − Ŷ4),

V (X̂A + X̂D) =
1
2
V (X̂1 + X̂2) +

1
2

cos2 θV (X̂3 − X̂4) +
1
2

sin2 θV (Ŷ3 − Ŷ4),

V (X̂A − X̂D) =
1
2
V (X̂1 − X̂2) +

1
2

cos2 θV (X̂3 + X̂4) +
1
2

sin2 θV (Ŷ3 + Ŷ4),

V (ŶA + ŶB) =
1
2
V (Ŷ1 + Ŷ2) +

1
2

cos2 θV (Ŷ3 + Ŷ4) +
1
2

sin2 θV (X̂3 + X̂4),

V (ŶA − ŶB) =
1
2
V (Ŷ1 − Ŷ2) +

1
2

cos2 θV (Ŷ3 − Ŷ4) +
1
2

sin2 θV (X̂3 − X̂4),

V (ŶA + ŶD) =
1
2
V (Ŷ1 + Ŷ2) +

1
2

cos2 θV (Ŷ3 − Ŷ4) +
1
2

sin2 θV (X̂3 − X̂4),

V (ŶA − ŶD) =
1
2
V (Ŷ1 − Ŷ2) +

1
2

cos2 θV (Ŷ3 + Ŷ4) +
1
2

sin2 θV (X̂3 + X̂4). (11)

while the squeezing component of the other light is fixed.
There is no advantage to this except that the outgoing
mode is coupled by four modes compared with the case
of combining a pair of single-mode squeezed states. Now,
we turn to look at fields A, B, C, and D, which are sepa-
rated from the outgoing fields by a polarizing beam split-
ter (PBS) based on their polarization. They can be writ-
ten as

Â

B̂

Ĉ

D̂

 =


√

2/2 0
√

2/2eiθ 0

0
√

2/2 0
√

2/2eiθ

√
2/2 0 −√

2/2eiθ 0

0
√

2/2 0 −√
2/2eiθ




â1

â2

â3

â4


(10)

and we can get the cross correlations of the quadrature
component among them:

see equations (11) above.

From (11), it is obvious that choosing a suitable relative
phase and component of squeezing, which can easily be
done by inserting a phase shift or converting the rela-
tive phase between the pump and injected signal fields of
the NOPA, results in entanglement between mode A and
mode B or between mode A and mode D, alternatively.
For example, mode A will be entangled with mode B if we
select a relative phase of zero (θ = 0) and one of two-mode
squeezed lights is squeezed in the component of X̂1 − X̂2

(Ŷ1 + Ŷ2) and the other one is squeezed in the component
of X̂3 − X̂4 (Ŷ3 + Ŷ4). However, mode A will be entangled
with mode D by changing the squeezed component from
X̂3 − X̂4 (Ŷ3 + Ŷ4) to X̂3 + X̂4 (Ŷ3 − Ŷ4). Furthermore,
when we fix the squeezed component of X̂1− X̂2 (Ŷ1 + Ŷ2)
for one two-mode squeezed light and X̂3−X̂4 ( Ŷ3+Ŷ4) for
the other light, the above mentioned entanglement can be

obtained by choosing a relative phase of θ = 0 or θ = π/2.
More generally, other kinds of entanglements can be ob-
tained by choosing a different relative phase between the
two fields and their squeezed component. Accordingly, the
difference in entanglement conditions lets the sender con-
trol the quantum information transmitted to different re-
ceivers.

2.2 Teleportation using a EPR switching state

The schematic diagram for the quantum switch telepor-
tation is shown in Figure 2. One of the switching EPR
beams is sent to where we wish to measure the input
signal. There it is mixed with an input signal beam on
the second 50:50 beamsplitter (BS2). The bright output
beams are directly detected by the detectors. The sum
and difference of the photocurrents represent the quadra-
ture amplitude and phase noise power [6], respectively.
The photocurrents are separated into two parts and sent
to amplitude and phase modulators at two output sta-
tions. The amplitude and phase modulators transform the
photocurrent signals into one beam of EPR sources, after
which the input signal is recovered.

Teleportation is usually quantified by the fidelity of
the process. Fidelity is a measurement of the overlap of
the input and output states. In a general experiment, one
could completely characterize individual input and out-
put states via optical homodyne tomography and thus
calculate the fidelity. However, most experimentally re-
alizable optical states have Gaussian statistics and can
therefore be fully characterized by measurements of the
first- and second-order moments of orthogonal quadra-
ture amplitudes, such as the amplitude and phase quadra-
tures [4]. Other criteria are two-dimensional and, in anal-
ogy with quantum non-demolition measurement (QND)
criteria [20], are based on the information transfer and
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Fig. 2. Schematic of switch-
ing teleportation arrangement.
TMSSa and TMSSb: two-mode
squeezed state, PM: phase mod-
ulation, AM amplitude modula-
tion, BS1 and BS2: 50:50 beam
splitters, PBS: polarizing beam
splitter.

quantum correlation proposed by Ralph and Lam [10].
The transfer coefficient, T = SNRout/SNRin, represents
allowable information transfer and the conditional vari-
ances, VCV = Vout − |〈δAinδAout〉|2 /Vin, measure the
similarity of the input and output beams. Here SNR
stands for the signal-to-noise ratios of the input and out-
put quadratures. Unlike QND, both quadratures of the
teleported beam are considered. By examining the lim-
its imposed on these quantities in any classical trans-
mission scheme, criteria for defining quantum teleporta-
tion are derived, that is 2 ≥ Tq = T + + T− > 1 and
0 ≤ Vq = V +

CV + V −
CV < 2, where the superscript + and −

denote the amplitude and phase quadratures respectively.
In the following, we will examine our system using these
criteria.

Suppose the signal in field âin is mixed with one of
the switch EPR beams on a 50:50 beam splitter (see
Fig. 2). We can write the input light amplitude noise spec-
trum as Var(X̂in) = Var(X̂s) + Var(X̂n) where Var(X̂s)
is the signal power and Var(X̂n) is the quantum noise
power. Similarly, the phase noise spectrum can be written
Var(Ŷin) = Var(Ŷs) + Var(Ŷn). The sum and difference of
output photocurrents are [6]

î+ =
√

2
2

[X̂in − X̂A],

î− =
√

2
2

[Ŷin + ŶA]. (12)

The actions of the modulators can be considered to be
additive, and we will assume that they are ideal in the
sender in that loss is negligible and the phase modulator
produces pure phase modulation and similarly for the am-

plitude modulator. The two output fields are give by [10]

Âout1 = B̂ + g+
1 î+ + ig−1 î−,

Âout2 = D̂ + g+
2 î+ + ig−2 î−, (13)

where g±i (i = 1, 2) describe the gains of amplitude and
phase, and their quadratures noise spectra are

Vout1(X̂) =
1
2

∣∣g+
1

∣∣2 V (X̂in) +
1
2
V g+

1

(
X̂2 − 1√

2
g+
1 X̂1

)
+

1
2

cos2 θV g+
1

(
X̂4 − 1√

2
g+
1 X̂3

)
+

1
2

sin2 θV g+
1

(
Ŷ4 − 1√

2
g+
1 Ŷ3

)
,

Vout1(Ŷ ) =
1
2

∣∣g−1 ∣∣2 V (Ŷin) +
1
2
V g−

1

(
Ŷ2 +

1√
2
g−1 Ŷ1

)
+

1
2

sin2 θV g−
1

(
X̂4 +

1√
2
g−1 X̂3

)
+

1
2

cos2 θV g+
1

(
Ŷ4 +

1√
2
g+
1 Ŷ3

)
,

Vout2(X̂) =
1
2

∣∣g+
2

∣∣2 V (X̂in) +
1
2
V g+

2

(
X̂2 − 1√

2
g+
2 X̂1

)
+

1
2

cos2 θV g+
1

(
X̂4 +

1√
2
g+
1 X̂3

)
+

1
2

sin2 θV g+
2

(
Ŷ4 +

1√
2
g+
2 Ŷ3

)
,

Vout2(Ŷ ) =
1
2

∣∣g−2 ∣∣2 V (Ŷin) +
1
2
V g−

2

(
Ŷ2 +

1√
2
g−2 Ŷ1

)
+

1
2

sin2 θV g−
2

(
X̂4 − 1√

2
g−2 X̂3

)
+

1
2

cos2 θV g+
1

(
Ŷ4 − 1√

2
g+
1 Ŷ3

)
, (14)
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where V g(Âi ± gÂj) are the adjusted correlation and
are always smaller than the correlation between Ai and
Aj(V (Âi ± Âj)) [5]. Clearly, the output fields contain
some information about the input signal but it is not
the exactly the input state due to additional noise from
quantum channels. However, if we choose the proper rela-
tive phase (θ) and two-mode squeezed lights, which have
the correlation between the amplitude or phase quadra-
ture, the additional noise in equation (14) can be can-
celed, i.e., teleportation of our input field is achieved.
We fix the relative phase θ = π/2. For the case of
ideal two-mode squeezed lights and measurement process
g±i (i = 1, 2) =

√
2, we choose two two-mode squeezed

lights in V (X̂2−X̂1) = V (Ŷ2 + Ŷ1) = 0 and V (X̂4 +X̂3) =
V (Ŷ4−Ŷ3) = 0. Without considering the loss of the signal,
the transfer coefficient can be written as the function of in-
put and output noise, T = Var(Aout)/Var(Ain). Then we
can get the transfer coefficient and conditional variances
at output station 1 and output station 2

T 1
q = 2, V 1

q = 0,

T 2
q = 0, V 2

q → ∞, (15)

where the superscript denotes output station. This means
that perfect teleportation is accomplished at output sta-
tion 1, however no signal is received, except huge noise,
at the output station 2. If we convert one of the input
squeezed states from V (X̂4 + X̂3) = V (Ŷ4 − Ŷ3) = 0 to
V (X̂4 − X̂3) = V (Ŷ4 + Ŷ3) = 0, the transfer coefficient
and conditional variances, T 2

q = 2, V 2
q = 0 and T 1

q = 0,

V 1
q → ∞, are obtained. Obviously switching teleportation

is achieved by converting the input states. Furthermore,
when we fix the squeezed component of V (X̂2 − X̂1) =
V (Ŷ2 + Ŷ1) = 0 and V (X̂4 + X̂3) = V (Ŷ4 − Ŷ3) = 0, the
above mentioned switching teleportation can be obtained
by choosing the relative phase of θ = π/2 or θ = 0.

In equation (14), it is obvious that the output noise
spectra relate the correlations between two inter-modes
of two-mode squeezed lights different from reference [10],
in which it relates the two orthogonal quadrature com-
ponents of two squeezed lights (Eq. (13) in Ref. [10]).
The equation (13) in reference [10] obviously indicates
that the teleportation penalty may be reduced for one
quadrature by introducing two squeezed light in orthog-
onal quadrature simultaneously, but any improvement in
the teleportation of one quadrature necessarily leads to a
degradation in the teleportation of the other. To teleport
an input state in two quadratures, we have to select the
output variances that include the squeezed component of
one light and anti-squeezed component of another light in
the same quadrature. The noise, which comes from the
anti-squeezed component, can be completely canceled by
correct choice of the electronic gain. This is the reason for
the opposite and carefully chosen gain for the amplitude
modulation and the phase modulation in the scheme of
reference [10]. However for our system, the correlations
between inter-modes of two-mode squeezed light act to
cancel the noise, so it is possible to use the correlation
and anticorrelation to completely cancel the noise in the

same quadrature. In this case, the teleportation condition
is less dependent on the sign and value of the gain and
this will give more freedom in the experiment. In practice
of course, the best teleportation occurs when the smallest
noise adding into the system, this means the gain should
be selected for best correlation between Xi(Yi) and scaled
quantities (1/

√
2)gXj((1/

√
2)gYj), which has been well

studied in references [5,21]. Simply put, the signal can al-
ways be teleported to the output station when the squeez-
ing is greater than 50% and the gain is below

√
2.

For the experiments, the most important work, gener-
ation of two-mode squeezed light, has been completed [11].
Furthermore, noiseless signal amplification using positive
electro-optic feed forward for one quadrature has been
demonstrated experimentally [21]. The maturation of the
technique makes it valuable for performing experiments.

3 Conclusion

In summary, we have shown that a switching EPR-type
correlation source can be established using a pair of two-
mode squeezed lights on one beamsplitter. This kind of
source can be utilized to design switching teleportation
in quantum information. The control condition is only to
change the squeezed component of one of two two-mode
squeezed lights from its amplitude quadrature to its phase
quadrature or to change the relative phase between the
two lights. The teleportation capability of the switch was
examined using the criteria proposed by Ralph and Lam
from a small signal quantum optical point of view. This
conditional teleportation system might be developed as
a practical quantum switch in future quantum commu-
nication systems. Furthermore, our scheme will give more
freedom for experimentation than the scheme proposed by
Ralph and Lam.
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